HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)–deficient mice

نویسندگان

  • Steffen Massberg
  • Sabine Grüner
  • Ildiko Konrad
  • Maisa I. Garcia Arguinzonis
  • Martin Eigenthaler
  • Kathrin Hemler
  • Julia Kersting
  • Christian Schulz
  • Iris Müller
  • Felicitas Besta
  • Bernhard Nieswandt
  • Ulrich Heinzmann
  • Ulrich Walter
  • Meinrad Gawaz
چکیده

Platelet adhesion and activation at the vascular wall are the initial steps leading to arterial thrombosis and vascular occlusion. Prostacyclin and nitric oxide inhibit platelet adhesion, acting via cyclic adenosine monophosphate (cAMP)– and cyclic guanosine monophosphate (cGMP)– dependent protein kinases. A major downstream target for both cAMPand cGMPdependent protein kinases is the vasodilator-stimulated phosphoprotein (VASP). To test the significance of VASP for the regulation of platelet adhesion in vivo, we studied platelet–vessel wall interactions using VASP-deficient (VASP / ) mice. Under physiologic conditions, platelet adhesion to endothelial cells was significantly enhanced in VASP null mutants when compared with wild-type mice (P < .05). Platelet recruitment in VASP null mice involved P-selectin and the fibrinogen receptor glycoprotein IIb-IIIa (GPIIb-IIIa). Under pathophysiologic conditions, the loss of VASP increased platelet adhesion to the postischemic intestinal microvasculature, to the atherosclerotic endothelium of ApoE-deficient mice, and to the subendothelial matrix following endothelial denudation (P < .05 vs wild type). Importantly, platelet adhesion in VASP null mutants was unresponsive to nitric oxide. These data show for the first time in vivo that VASP is involved in down-regulation of platelet adhesion to the vascular wall under both physiologic and pathophysiologic conditions. (Blood. 2004;103:136-142)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice.

Platelet adhesion and activation at the vascular wall are the initial steps leading to arterial thrombosis and vascular occlusion. Prostacyclin and nitric oxide inhibit platelet adhesion, acting via cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases. A major downstream target for both cAMP- and cGMP-dependent protein kinases is the vasodil...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans

The vasodilator-stimulated phosphoprotein (VASP) plays an important role in cGMP-induced platelet inhibition. Since VASP is an in vitro substrate for cGMPdependent protein kinase (PKG), it has been presumed that VASP phosphorylation induced by cGMP is mediated by PKG. Here we show that, in human platelets, phosphorylation of VASP at Ser239 induced by either cGMP analogs or nitric oxide (NO) don...

متن کامل

Vasodilator-stimulated phosphoprotein is involved in stress-fiber and membrane ruffle formation in endothelial cells.

Vasodilator-stimulated phosphoprotein (VASP) is highly expressed in vascular endothelial cells, where it has been implicated in cellular reorganization during angiogenesis, as well as in endothelial retraction and changes in vessel permeability. However, the cellular functions of VASP are not known. In this study, we have expressed wild-type and mutant forms of VASP in endothelial cells to dete...

متن کامل

Vasodilator-stimulated phosphoprotein regulates proliferation and growth inhibition by nitric oxide in vascular smooth muscle cells.

OBJECTIVE Vasodilator-stimulated phosphoprotein (VASP) was identified as a substrate for cGMP-dependent protein kinase (PKG) and cAMP-dependent protein kinase (PKA). It is preferentially phosphorylated at serine239 by PKG, whereas serine157 is a preferred phosphorylation site for PKA. In addition, serine157 is phosphorylated by PKC in response to serum. We have investigated the effects of VASP ...

متن کامل

Reduced vascular NO bioavailability in diabetes increases platelet activation in vivo.

OBJECTIVE Platelet activation is a feature of cardiovascular disease that is also characterized by endothelial dysfunction. The direct relationship between impaired endothelium-derived NO bioavailability and platelet activation remains unclear. We investigated whether acute inhibition of NO production modulates platelet activation in mice and whether specific rescue of endothelial function in d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003